SAR Image Classification by Multilayer Back Propagation Neural Network
نویسندگان
چکیده
A novel descriptive feature extraction method of Discrete Fourier transform and neural network classifier for classification of Synthetic Aperture Radar (SAR) images is proposed. The classification process has the following stages (1) Image Segmentation using statistical Region Merging (SRM) (2) Polar transform and Feature extraction using Discrete Fourier Transform (3) Neural Network classification using back propagation. This is generally the first step in image analysis. Segmentation subdivides an image into its constituent parts or objects. The level to which this subdivision is carried depends on the problem being solved. The image segmentation in this study is performed using Statistical Region Merging proposed Richard Nock and Frank Nielsen. The key idea of the Statistical Region Merging model is to formulate image segmentation as an inference problem. Here the merging procedure is based on the theorem. Feature vectors as the input for the neural network. Polar transform is applied to segmented SAR image. The rotation problem under the Cartesian coordinates becomes the translation problem under the polar coordinates.
منابع مشابه
Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملDocument Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملIdentification of Houseplants Using Neuro-vision Based Multi-stage Classification System
In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملRecognition of Sar Target Based on Multilayer Auto-encoder and Snn
Automatic target recognition (ATR) of synthetic aperture radar (SAR) image is investigated. One feature extraction algorithm of SAR image based on multilayer auto-encoder is proposed. The method makes use of a probabilistic neural network, restricted Boltzmann machine (RBM), modeling probability distribution of environment. Through the formation of more expressive multilayer neural network, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015